Bibliographie

Théorie des gammes

  1. C. Callender, I. Quinn and D. Tymoczko, Generalized voice-leading spaces., Science, vol. 320, no. 5874, 2008, pp. 346–348. [bibtex] [pdf]
  2. N. Jacoby et al., Universal and Non-universal Features of Musical Pitch Perception Revealed by Singing., Current biology, vol. 29, no. 19, 2019, pp. 3229–3243.e12. [bibtex] [pdf]
  3. S. Konar, The Sounds of Music: Science of Musical Scales. III: Indian Classical, Resonance, vol. 24, no. 10, 2019, pp. 1125–1135. [bibtex]
  4. M. C. LoPresto, Measuring Musical Consonance and Dissonance, Physics Teacher, vol. 53, no. 4, 2015, pp. 225–229. [bibtex]
  5. F. Loosen, The Effect of Musical Experience on the Conception of Accurate Tuning, Music Perception: An Interdisciplinary Journal, vol. 12, no. 3, 1995, pp. 291–306. [bibtex]
  6. M. Braun, The gamelan pelog scale of Central Java as an example of a non-harmonic musical scale, 2002. [bibtex] [pdf]
  7. J. M. McBride, T. Tlusty, Cross-cultural data shows musical scales evolved to maximise imperfect fifths, 2020, pp. 1–31. [bibtex] [pdf]
  8. J. H. McDermott, A. J. Lehr and A. J. Oxenham, Individual differences reveal the basis of consonance., Current biology, vol. 20, no. 11, 2010, pp. 1035–1041. [bibtex] [pdf]
  9. J. N. Oppenheim, M. O. Magnasco, Human time-frequency acuity beats the Fourier uncertainty principle., Physical Review Letters, vol. 110, no. 4, 2013, pp. 044301. [bibtex] [pdf]
  10. D. Tymoczko, Dualism and the Beholder's Eye: Inversional Symmetry in Chromatic Tonal Music, Oxford University Press, 2012. [bibtex]
  11. S. C. Van Hedger, H. C. Nusbaum, Individual differences in absolute pitch performance: Contributions of working memory, musical expertise, and tonal language background., Acta psychologica, vol. 191, 2018, pp. 251–260. [bibtex] [pdf]